
1Getting Started

Installation and Operation Manual

Blackmagic
3G-SDI
Arduino Shield
July 2016

Welcome

Thank you for purchasing your new Blackmagic 3G-SDI Arduino Shield.

We are always interested in new technologies and are excited by all the creative ways our SDI

products can be used. With your 3G-SDI Arduino Shield, you can now integrate the Arduino into

your SDI workflow to get more control options with your Blackmagic Design equipment.

For example, ATEM switchers can control Blackmagic URSA Mini and Blackmagic Studio

Cameras via data packets embedded in the SDI signal. If you are not running an ATEM switcher,

but you would still like the ability to control your Blackmagic cameras, you can build custom

control solutions with your 3G-SDI Arduino Shield. The shield gives you the SDI platform to

build upon, so you can loop the program return feed from your switcher, through the shield, and

into the program input on your Blackmagic Cameras.

Writing the code to send the commands to the camera is easy and all the supported

commands are included in this manual.

You can control the cameras using a computer, or you can add buttons, knobs and

joysticks to your shield and build dynamic hardware controllers for adjusting features

such as lens focus and zoom, aperture settings, pedestal and white balance control, the

camera’s powerful built in color corrector, and much more. Building your own custom

controller is useful for production, but it’s also a lot of fun!

We are excited by this technology and would love to hear about any SDI controllers you

have built for your 3G-SDI Arduino Shield!

This instruction manual contains all the information you need to start using your

Blackmagic 3G-SDI Arduino Shield. Please check the support page on our website at

www.blackmagicdesign.com for the latest version of this manual and for updates to your

shield’s internal software. Keeping your software up to date will ensure you get all the

latest features! When downloading software, please register with your information so we

can keep you updated when new software is released. We are continually working on

new features and improvements, so we would love to hear from you!

Grant Petty

CEO Blackmagic Design

English

Contents

Blackmagic 3G-SDI Arduino Shield

Getting Started 4

Attaching and Soldering Headers 4

Mounting to the Arduino Board 5

Plugging in Power 5

Connecting to SDI Equipment 6

Software Installation 7

Installing Internal Software 7

Installing Arduino Library Files 7

Blackmagic Arduino Shield Setup 9

I2C Address 9

Video Format 9

Programming Arduino Sketches 10

Testing your Blackmagic Shield and Library Installation 10

LED Indicators 11

Attaching Shield Components 12

Communicating with your Arduino Shield 12

High Level Overview 12

I2C Interface 12

Serial Interface 13

Example Usage 13

Studio Camera Control Protocol 13

Blackmagic Video Device Embedded Control Protocol 15

Example Protocol Packets 21

Developer Information 22

Help 26

Warranty 27

4Getting Started

Getting Started

Attaching and Soldering Headers
Your Blackmagic 3G-SDI Arduino Shield is supplied with 4 stackable headers, including two
8 pin headers, a 10 pin, and a 6 pin header. Headers are bridging connectors used to mount
your shield to the Arduino board, and because they are stackable you can attach other shields
on top with additional components, such as control buttons, knobs and joysticks. The header
layout supports mounting to Arduino boards with an R3 footprint, such as the Arduino UNO.

To attach the headers to your shield:
1 Insert the pins of each header through the corresponding pin holes on each side of

your Blackmagic Arduino shield. Refer to the illustration below for the header layout
arrangement.

2 Solder the base of each header pin to the underside of your shield. Make sure
the solder on each pin creates a firm join with the pin hole, but does not touch
the solder on nearby pins.

6 PIN

8 PIN

10 PIN

8 PIN

A5 (I2C) SCL
A4 (I2C) SDA

0 - Serial RX
 1 - Serial TX

(I2C) SDA
(I2C) SCL

NOTE When connecting to the shield, communication is via I2C or
Serial. We recommend I2C as this enables the serial monitor to be used
and makes all other pins available. Select the communication mode
when defining the BMDSDIControl object in the sketch. Refer to the
‘Communicating with your Arduino Shield’ section for more information.

5Getting Started

Mounting to the Arduino Board
Now that your headers are soldered to your shield, you can mount the 3G-SDI shield to your
Arduino board.

Carefully holding each side of the shield, align the header pins with your Arduino board’s
headers and gently push the pins into the header slots. Be careful not to bend any of the pins
while mounting the shield.

With all pins plugged in, the connection between the Blackmagic
shield and the Arduino board should be firm and stable.

Plugging in Power
To power your Blackmagic 3G-SDI Arduino Shield, simply plug in a 12V power adapter into the
12V power input on your Blackmagic shield.

TIP To help make sure all pins on your shield are aligned with the
female header pin slots on the Arduino board, it’s helpful to solder just
one pin on each header first. Now place the shield onto the Arduino
board to check the pin alignment. If any headers need adjusting, you
can then warm the solder joint on the corresponding header and
improve its alignment. This is a much easier method than soldering all
the joints first and then trying to make adjustments.

NOTE Plugging power into the Arduino board will not provide sufficient
power to the Blackmagic shield, however, powering the Blackmagic
shield will provide power to the Arduino as well, so make sure power is
connected to your Blackmagic shield only.

6Getting Started

Connecting to SDI Equipment
With power supplied, you can now plug your Blackmagic Arduino shield into your
SDI equipment. For example, to plug into a switcher and a Blackmagic URSA Mini:

1 Plug the program output from your switcher to the Blackmagic Arduino shield’s
SDI input.

2 Plug your Blackmagic Arduino shield’s SDI output into the ‘program’ SDI input marked
PGM on your Blackmagic URSA Mini.

A connection diagram is provided below.

That’s all there is to getting started!

Now that your shield is mounted to the Arduino board, powered, and connected to your SDI
equipment, you can install the internal software and library files, program the Arduino software
and begin using the shield to control your equipment.

Continue reading the manual for information on how to install the shield’s internal software, and
where to install the Arduino library files so the shield can communicate with your Arduino.

Switcher
Blackmagic 3G-SDI Arduino Shield

SDI IN

SDI OUT

SDI ‘PGM’ Input

Blackmagic URSA Mini

TIP You can also use your Blackmagic 3G-SDI Arduino Shield to control other
Blackmagic Design products, such as Blackmagic MultiView 16. For example,
when your shield is connected to input 16, you can display a tally border on the
multi view.

7Software Installation

Software Installation

Installing Internal Software
Blackmagic Arduino Shield Setup is used to update your shield’s internal software. The internal
software communicates with the Arduino board, and controls the board using Arduino library
files. These library files are installed with the setup software and all you need to do is copy the
folder containing the files and paste it into your Arduino application folder. You can find
information about the library files and how to install them in the next section of this manual.

We recommend downloading the latest Blackmagic 3G-SDI Arduino Shield software and
updating your shield so you can benefit from new features and improvements. The latest
version can be downloaded from the Blackmagic Design support center at
www.blackmagicdesign.com/support

To install the internal software using Mac OS X:

1 Download and unzip the Blackmagic 3G-SDI Arduino Shield software.

2 Open the resulting disk image and launch the Blackmagic Arduino Shield installer.
Follow the on screen instructions.

3 After installing the latest version of Blackmagic Arduino Shield installer, power your
Blackmagic shield and connect it to your computer via a USB cable.

4 Now launch the setup utility and follow any onscreen prompt to update your shield’s
internal software. If no prompt appears, the internal software is up to date and there is
nothing further you need to do.

To install the internal software using WIndows:

1 Download and unzip the Blackmagic 3G-SDI Arduino Shield software.

2 You should see a Blackmagic Arduino Shield folder containing this manual and the
Blackmagic Arduino Shield installer. Double-click the installer and follow the onscreen
prompts to complete the installation.

3 After installing the latest version of the Blackmagic Arduino Shield installer, power your
Blackmagic shield and connect it to your computer via a USB cable.

4 Now launch the setup utility and follow any onscreen prompt to update your shield’s
internal software. If no prompt appears, the internal software is up to date and there is
nothing further you need to do.

Installing Arduino Library Files
The programs written to control your Arduino are called sketches and your Blackmagic 3G-SDI
Arduino Shield uses Arduino library files that help make writing sketches easier. After installing
your shield’s setup software, the library files are installed into a folder named ‘Library’. All you
need to do now is copy the folder containing the library files and paste it into your Arduino
libraries folder.

8Installing Arduino Library Files

To install the library files on Mac OS X:

1 Open ‘Blackmagic Arduino Shield’ in your ‘applications’ folder.

2 Open the ‘Library’ folder and right click/copy the folder named: BMDSDIControl.

3 Now go to your computer’s ‘documents’ folder and open the Arduino folder.

4 You will see a sub-folder named ‘libraries’. Paste the BMDSDIControl folder into the
‘libraries’ folder.

To install the library files on Windows:

1 Open the Programs/Blackmagic Arduino Shield folder.

2 You will now see a subfolder named ‘Library’. Open this folder and then right click/copy
the folder named: BMDSDIControl.

3 Now go to your computer’s ‘documents’ folder and open the Arduino folder.

4 You will see a sub-folder named ‘libraries’. Paste the BMDSDIControl folder into the
‘libraries’ folder.

That’s all you need to do to install the Blackmagic Design library files on your computer. When
running the Arduino software, you will now also have Blackmagic Design example sketches to
choose from.

Simply go to the ‘file’ drop down menu in the Arduino software menu bar, and select ‘examples’.
Now select BMDSDIControl and you will see a list of example sketches you can use.

With the library files stored in the correct folder, your shield can now use them to communicate
with the Arduino board. All you need to do is program the Arduino IDE software. Refer to the
‘Programming Arduino Sketches’ section for more information.

NOTE The Arduino IDE software needs to be closed when installing libraries.

NOTE If an updated library file with examples is released in the future, you will
need to delete the old BMDSDIControl folder and replace it with the new folder
using the method described above.

9Blackmagic Arduino Shield Setup

Blackmagic Arduino Shield Setup

The Blackmagic Arduino Shield Setup software lets you change
settings on your shield such as the I2C address and video output format.

With Blackmagic Arduino Shield Setup installed on your computer, you can now change
settings for your shield, such as the ‘I2C address’, which identifies your shield so the Arduino
board can communicate with it, and the ‘video format’, which sets the output format for
your shield.

I2C Address
In very rare cases, there is a potential for another shield mounted to your Blackmagic shield to
share the same I2C address as your shield’s default address which will create a conflict. If this
occurs, you can change your shield’s default address setting.

The default address for your shield is 0x6E, however, you can choose from a range of
addresses between 0x08 and 0x77.

To change the address for your shield:

1 Launch Blackmagic Arduino Shield Setup and click on your shield’s ‘settings’ icon.

2 In the ‘set address to:’ edit box, type the address you wish to use.

3 Click ‘save’.

Video Format
The default output format is selected in the setup utility for when no input is connected. When
an input is detected, the output will follow the same format as the input. If this input is removed
the output will revert to the default output format selected in the utility. You can change the
video format by clicking in the ‘default output format’ drop down menu and selecting the
format you want.

You can choose from the following video output formats:

 � 720p50

 � 720p59.94

 � 720p60

 � 1080i50

 � 1080i59.94

 � 1080i60

10Programming Arduino Sketches

 � 1080p23.98

 � 1080p24

 � 1080p25

 � 1080p29.97

 � 1080p30

 � 1080p50

 � 1080p59.94

 � 1080p60

Programming Arduino Sketches
The programs, or sketches, written into the Arduino software are very easy to write! Sketches
are written using common ‘C’ programming language. When programming your sketches using
commands from the Studio Camera Control Protocol, the shield embeds these commands into
the SDI output which lets you control your Blackmagic URSA Mini or Blackmagic Studio Cameras.

All supported commands are included in the Studio Camera Control Protocol section of this
manual so you can take the commands from the protocol and use them in your sketch.

Testing your Blackmagic Shield
and Library Installation
After everything is connected as described in the ‘Getting Started’ section and you have
installed the setup software and library files, you’ll want to check that your shield is
communicating with the Arduino board and that everything is working as it should.

A fast way is to open and run the supplied tally blink example sketch.

To do this:

1 Launch the Arduino IDE software.

2 Go to the ‘tools’ menu and select the Arduino board and Port number.

3 From the ‘File’ menu, select ‘Examples/BMDSDIControl’ and choose the sketch
named ‘TallyBlink’.

4 Upload the sketch to your board.

The Tally Blink example sketch is a fast and easy way to test your
Arduino shield. Raw data can be sent to your shield via I2C using commands
from the Studio Camera Protocol document, but we have also provided
custom libraries to make programming sketches much easier.

11Programming Arduino Sketches

You should now see the tally light on your Blackmagic Studio Camera blink once every second.
If you see the tally light blinking you can be sure your Blackmagic shield is communicating with
the Arduino and everything is working properly.

If the tally light is not blinking, check that your Blackmagic camera’s tally number is set to 1.

If you need further assistance, please visit the Blackmagic Design support center at
www.blackmagicdesign.com/support. Refer to the help section of this manual for more
information on the different ways you can get help setting up your shield.

LED Indicators
Your Blackmagic 3G-SDI Arduino Shield has six indicator LEDs that confirm activity on your
shield such as power, UART, I2C and SPI communication, plus indicators to show when tally and
camera control overrides are enabled.

 LED 1 - System Active
Illuminates when power is connected to the shield.

 LED 2 - Control Overrides Enabled
Illuminates if you have enabled camera control in your Arduino sketch.

 LED 3 - Tally Overrides Enabled
Illuminates if you have enabled tally in your Arduino sketch.

 LED 5 - I2C Parser Busy
Illuminates when communication is detected between your shield and the Arduino
using the I2C protocol.

 LED 6 - Serial Parser Busy
Illuminates when UART communication is detected.

When your Blackmagic shield is booting, the power indicator will remain off and LEDs 3, 4 and 5
will indicate the following activity.

 LED 3 - Application image loading

 LED 4 - EEPROM initializing

 LED 5 - Memory check in progress

NOTE Make sure your Blackmagic Camera’s tally number is set to 1.

6 PIN

8 PIN

10 PIN

8 PIN

6 PIN

8 PIN

10 PIN

8 PIN

LED 1

LED 2

LED 3

LED 4

LED 5

LED 6

12Communicating with your Arduino Shield

After a successful boot, the power LED will turn on and all LEDs will resume their standard
functions during operation.

In the rare case of a boot failure, all LEDs except for the failed activity will flash rapidly so you
can identify the cause of the failure.

Attaching Shield Components
If you want to build your own hardware controller, you can create a new shield with buttons,
knobs and a joystick for more tactile, hands on control. Simply mount the custom shield to your
Blackmagic 3G-SDI Arduino Shield by plugging it into your shield’s header slots. There is no
limit to the types of controllers you can build. You can even replace the circuitry in an old CCU
with your own custom Arduino solution for an industry standard camera control unit.

You can create your own hardware controller and plug it into
your Blackmagic 3G-SDI Arduino Shield for more interactive
and refined control.

Communicating with your
Arduino Shield
You can communicate with your Arduino Shield via I2C or Serial. We recommend I2C because of
the low pin count and it frees up the serial monitor. This also allows you to use more I2C devices
with the shield.

High Level Overview
The library provides two core objects, BMD_SDITallyControl and BMD_SDICameraControl,
which can be used to interface with the shield’s tally and camera control functionalities. Either
or both of these objects can be created in your sketch to issue camera control commands, or
read and write tally data respectively. These objects exist in several variants, one for each of
the physical I2C or Serial communication busses the shield supports.

I2C Interface
To use the I2C interface to the shield:

// NOTE: Must match address set in the setup utility software
const int shieldAddress = 0x6E;
BMD_SDICameraControl_I2C sdiCameraControl(shieldAddress);
BMD_SDITallyControl_I2C sdiTallyControl(shieldAddress);

13Studio Camera Control Protocol

Serial Interface
To use the Serial interface to the shield:

BMD_SDICameraControl_Serial sdiCameraControl;
BMD_SDITallyControl_Serial sdiTallyControl;

Note that the library will configure the Arduino serial interface at the required 38400 baud rate.
If you wish to print debug messages to the Serial Monitor when using this interface, change the
Serial Monitor baud rate to match. If the Serial Monitor is used, some binary data will be visible
as the IDE will be unable to distinguish between user messages and shield commands.

Example Usage
Once created in a sketch, these objects will allow you to issue commands to the shield over
selected bus by calling functions on the created object or objects. A minimal sketch that uses
the library via the I2C bus is shown below.

// NOTE: Must match address set in the setup utility software
const int shieldAddress = 0x6E;
BMD_SDICameraControl_I2C sdiCameraControl(shieldAddress);
BMD_SDITallyControl_I2C sdiTallyControl(shieldAddress);

void setup() {
 // Must be called before the objects can be used
 sdiCameraControl.begin();
 sdiTallyControl.begin();

 // Turn on camera control overrides in the shield
 sdiCameraControl.setOverride(true);

 // Turn on tally overrides in the shield
 sdiTallyControl.setOverride(true);
}

void loop() {
 // Unused
}

The list of functions that may be called on the created objects are listed further on in this
document. Note that before use, you must call the ‘begin’ function on each object before
issuing any other commands.

Some example sketches demonstrating this library are included in the Arduino
IDE’s File->Examples->BMDSDIControl menu.

Studio Camera Control Protocol
This section contains the Studio Camera Control Protocol from the Blackmagic Studio Camera
manual. You can use the commands in this protocol to control your Blackmagic URSA Mini or
Blackmagic Studio Camera via your Arduino shield.

The Blackmagic Studio Camera Protocol shows that each camera parameter is arranged in
groups, such as:

Group ID Group

0 Lens

1 Video

2 Audio

14Studio Camera Control Protocol

Group ID Group

3 Output

4 Display

5 Tally

6 Reference

7 Configuration

8 Color Correction

The group ID is then used in the Arduino sketch to determine what parameter to change.

The function: sdiCameraControl.writeXXXX, is named based on what parameter you wish to
change, and the suffix used depends on what group is being controlled.

For example sdiCameraControl.writeFixed16 is used for focus, aperture, zoom, audio, display,
tally and color correction when changing absolute values.

The complete syntax for this command is as follows:

sdiCameraControl.writeFixed16 (
Camera number,
Group,
Parameter being controlled,
Operation,
Value
);

The operation type specifies what action to perform on the specified parameter

0 = assign value. The supplied Value is assigned to the specified parameter.

1 = offset value. Each value specifies signed offsets of the same type to be added to the current
parameter Value.

For example:

sdiCameraControl.writeCommandFixed16(
1,
8,
0,
0,
liftAdjust
);

1 = camera number 1
8 = Color Correction group
0 = Lift Adjust
0 = assign value
liftAdjust = setting the value for the RGB and luma levels

As described in the protocol section, liftAdjust is a 4 element array for RED[0], GREEN[1],
BLUE[2] and LUMA[3]. The complete array is sent with this command.

The sketch examples included with the library files contain descriptive comments to explain
their operation.

15Studio Camera Control Protocol

Blackmagic Video Device Embedded Control Protocol
Version 1.0

You can use the Video Device Embedded Control Protocol to control Blackmagic URSA Mini
and Blackmagic Studio Cameras using your Arduino shield and construct devices that integrate
with our products. Here at Blackmagic Design, our approach is to open up our protocols and we
eagerly look forward to seeing what you come up with!

Overview

This document describes an extensible protocol for sending a uni-directional stream of small
control messages embedded in the non-active picture region of a digital video stream.

The video stream containing the protocol stream may be broadcast to a number of devices.
Device addressing is used to allow the sender to specify which device each message is
directed to.

Assumptions

Alignment and padding constraints are explicitly described in the protocol document. Bit fields
are packed from LSB first. Message groups, individual messages and command headers are
defined as, and can be assumed to be, 32 bit aligned.

Blanking Encoding

A message group is encoded into a SMPTE 291M packet with DID/SDID x51/x53 in the active
region of VANC line 16.

Message Grouping

Up to 32 messages may be concatenated and transmitted in one blanking packet up to a
maximum of 255 bytes payload. Under most circumstances, this should allow all messages to
be sent with a maximum of one frame latency.

If the transmitting device queues more bytes of message packets than can be sent in a single
frame, it should use heuristics to determine which packets to prioritise and send immediately.
Lower priority messages can be delayed to later frames, or dropped entirely as appropriate.

Abstract Message Packet Format

Every message packet consists of a three byte header followed by an optional variable length
data block. The maximum packet size is 64 bytes.

Destination device (uint8) Device addresses are represented as an 8 bit unsigned integer. Individual
devices are numbered 0 through 254 with the value 255 reserved to
indicate a broadcast message to all devices.

Command length (uint8) The command length is an 8 bit unsigned integer which specifies the length
of the included command data. The length does NOT include the length of
the header or any trailing padding bytes.

Command id (uint8) The command id is an 8 bit unsigned integer which indicates the message
type being sent. Receiving devices should ignore any commands that they
do not understand. Commands 0 through 127 are reserved for commands
that apply to multiple types of devices. Commands 128 through 255 are
device specific.

Reserved (uint8) This byte is reserved for alignment and expansion purposes. It should be
set to zero.

16Studio Camera Control Protocol

Command data (uint8[]) The command data may contain between 0 and 60 bytes of data.
The format of the data section is defined by the command itself.

Padding (uint8[]) Messages must be padded up to a 32 bit boundary with 0x0 bytes.
Any padding bytes are NOT included in the command length.

Receiving devices should use the destination device address and/or the command identifier to
determine which messages to process. The receiver should use the command length to skip
irrelevant or unknown commands and should be careful to skip the implicit padding as well.

Defined Commands

Command 0: change configuration

Category (uint8) The category number specifies one of up to 256 configuration categories
available on the device.

Parameter (uint8) The parameter number specifies one of 256 potential configuration
parameters available on the device. Parameters 0 through 127 are
device specific parameters. Parameters 128 though 255 are reserved for
parameters that apply to multiple types of devices.

Data type (uint8) The data type specifies the type of the remaining data. The packet length is
used to determine the number of elements in the message. Each message
must contain an integral number of data elements.

Currently defined values are:

0: void / boolean

A void value is represented as a boolean array of length zero.

The data field is a 8 bit value with 0 meaning false and all other values
meaning true.

1: signed byte

Data elements are signed bytes

2: signed 16 bit integer

Data elements are signed 16 bit values

3: signed 32 bit integer

Data elements are signed 32 bit values

4: signed 64 bit integer

Data elements are signed 64 bit values

5: UTF-8 string

Data elements represent a UTF-8 string with no terminating character.

Data types 6 through 127 are reserved.

128: signed 5.11 fixed point

Data elements are signed 16 bit integers representing a real number with
5 bits for the integer component and 11 bits for the fractional component.

The fixed point representation is equal to the real value multiplied by 2^11.

The representable range is from -16.0 to 15.9995 (15 + 2047/2048).

Data types 129 through 255 are available for device specific purposes.

17Studio Camera Control Protocol

Operation type (uint8) The operation type specifies what action to perform on the specified
parameter. Currently defined values are:

0: assign value

The supplied values are assigned to the specified parameter. Each element
will be clamped according to its valid range.

A void parameter may only be “assigned” an empty list of boolean type.

This operation will trigger the action associated with that parameter.

A boolean value may be assigned the value zero for false, and any other
value for true.

1: offset / toggle value

Each value specifies signed offsets of the same type to be added to the
current parameter values.The resulting parameter value will be clamped
according to their valid range.

It is not valid to apply an offset to a void value.

Applying any offset other than zero to a boolean value will invert that value.

Operation types 2 through 127 are reserved.

Operation types 128 through 255 are available for device specific purposes.

Data (void) The data field is 0 or more bytes as determined by the data type and
number of elements.

The category, parameter, data type and operation type partition a 24 bit operation space.

Group ID Parameter Type Index Min Max Interpretation

Lens 0

.0 Focus fixed16 – 0.0 1.0 0.0=near, 1.0=far

.1
Instantaneous
autofocus

void – – –
trigger instantaneous
autofocus

.2 Aperture (f-stop) fixed16 – -1.0 16.0
Aperture Value
(where fnumber =
sqrt(2^AV))

.3
Aperture
(normalised)

fixed16 – 0.0 1.0 0.0=smallest, 1.0=largest

.4 Aperture (ordinal) int16 – 0 n

Steps through available
aperture values from
minimum (0) to
maximum (n)

.5
Instantaneous
auto aperture

void – – –
trigger instantaneous
auto aperture

.6
Optical image
stabilisation

boolean – – –
true=enabled,
false=disabled

.7
Set absolute
zoom (mm)

int16 – 0 max

Move to specified focal
length in mm, from
minimum (0) to
maximum (max)

18Studio Camera Control Protocol

Group ID Parameter Type Index Min Max Interpretation

.8
Set absolute
zoom (normalised)

fixed16 – 0.0 1.0
Move to specified
normalised focal length:
0.0=wide, 1.0=tele

.9
Set continuous
zoom (speed)

fixed16 – -1.0 +1.0

Start/stop zooming at
specified rate: -1.0=zoom
wider fast, 0.0=stop,
+1.0=zoom tele fast

Video 1

.0 Video mode int8

[0] =
frame rate

– – 24, 25, 30, 50, 60

[1] = M-rate – – 0=regular, 1=M-rate

[2] =
dimensions

– –
0=NTSC, 1=PAL, 2=720,
3=1080, 4=2k, 5=2k
DCI, 6=UHD

[3] =
interlaced

– –
0=progressive,
1=interlaced

[4] =
colour space

– – 0=YUV

.1 Sensor Gain int8 – 1 16 1x, 2x, 4x, 8x, 16x gain

.2
Manual
White Balance

int16 – 3200 7500 Colour temperature in K

.3 Reserved – – – Reserved

.4 Reserved – – – Reserved

.5 Exposure (us) int32 – 1 42000 time in us

.6 Exposure (ordinal) int16 – 0 n

Steps through available
exposure values from
minimum (0) to
maximum (n)

.7
Dynamic
Range Mode

int8 enum – 0 1 0 = film, 1 = video

.8
Video
sharpening level

int8 enum – 0 3
0=Off, 1=Low,
2=Medium, 3=High

Audio 2

.0 Mic level fixed16 – 0.0 1.0
0.0=minimum,
1.0=maximum

.1
Headphone
level

fixed16 – 0.0 1.0
0.0=minimum,
1.0=maximum

.2
Headphone
program mix

fixed16 – 0.0 1.0
0.0=minimum,
1.0=maximum

.3 Speaker level fixed16 – 0.0 1.0
0.0=minimum,
1.0=maximum

19Studio Camera Control Protocol

Group ID Parameter Type Index Min Max Interpretation

.4 Input type int8 – 0 2

0=internal mic, 1=line
level input, 2=low mic
level input, 3=high mic
level input

.5 Input levels fixed16

[0] ch0 0.0 1.0
0.0=minimum,
1.0=maximum

[1] ch1 0.0 1.0
0.0=minimum,
1.0=maximum

.6
Phantom
power

boolean – – –
true = powered, false =
not powered

Output 3

.0 Overlays
uint16 bit
field

– – – 0x1 = display status

– – – 0x2 = display guides

– – –

Some cameras
don’t allow
separate control of
guides and
status overlays.

Display 4

.0 Brightness fixed16 0.0 1.0
0.0=minimum,
1.0=maximum

.1 Overlays
int16 bit
field

– –
0x4 = zebra
0x8 = peaking

.2 Zebra level fixed16 0.0 1.0
0.0=minimum,
1.0=maximum

.3 Peaking level fixed16 0.0 1.0
0.0=minimum,
1.0=maximum

.4
Colour bars
display
time (seconds)

int8 0 30
0=disable bars,
1-30=enable
bars with timeout (s)

Tally 5

.0 Tally brightness fixed16 0.0 1.0

Sets the tally front and
tally rear brightness to
the same level.
0.0=minimum,
1.0=maximum

.1
Tally front
brightness

fixed16 0.0 1.0
Sets the tally front
brightness. 0.0=minimum,
1.0=maximum

.2
Tally rear
brightness

fixed16 0.0 1.0
Sets the tally rear
brightness. 0.0=minimum,
1.0=maximum

Tally rear brightness
cannot be turned off

20Studio Camera Control Protocol

Group ID Parameter Type Index Min Max Interpretation

Reference 6

.0 Source int8 enum 0 1
0=internal, 1=program,
2=external

.1 Offset int32 – – +/- offset in pixels

Configuration 7

.0 Real Time Clock int32
[0] time – – BCD - HHMMSSFF

[1] date – – BCD - YYYYMMDD

.1 Reserved – – – – Reserved

Colour
Correction

8

.0 Lift Adjust fixed16

[0] red -2.0 2.0 default 0.0

[1] green -2.0 2.0 default 0.0

[2] blue -2.0 2.0 default 0.0

[3] luma -2.0 2.0 default 0.0

.1 Gamma Adjust fixed16

[0] red -4.0 4.0 default 0.0

[1] green -4.0 4.0 default 0.0

[2] blue -4.0 4.0 default 0.0

[3] luma -4.0 4.0 default 0.0

.2 Gain Adjust fixed16

[0] red 0.0 16.0 default 1.0

[1] green 0.0 16.0 default 1.0

[2] blue 0.0 16.0 default 1.0

[3] luma 0.0 16.0 default 1.0

.3 Offset Adjust fixed16

[0] red -8.0 8.0 default 0.0

[1] green -8.0 8.0 default 0.0

[2] blue -8.0 8.0 default 0.0

[3] luma -8.0 8.0 default 0.0

.4 Contrast Adjust fixed16
[0] pivot 0.0 1.0 default 0.5

[1] adj 0.0 2.0 default 1.0

.5 Luma mix fixed16 – 0.0 1.0 default 1.0

.6 Colour Adjust fixed16
[0] hue -1.0 1.0 default 0.0

[1] sat 0.0 2.0 default 1.0

.7
Correction
Reset Default

void – – – reset to defaults

21Studio Camera Control Protocol

Example Protocol Packets

Operation
Packet
Length

Byte

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

header command data
de

st
in

at
io

n

le
ng

th

co
m

m
an

d

re
se

rv
ed

ca
te

go
ry

pa
ra

m
et

er

ty
pe

op
er

at
io

n

trigger
instantaneous auto
focus on camera 4

8 4 4 0 0 0 1 0 0

turn on OIS on
all cameras

12 255 5 0 0 0 6 0 0 1 0 0 0

set exposure to
10 ms on camera 4
(10 ms = 10000 us
= 0x00002710)

12 4 8 0 0 1 5 3 0 0x10 0x27 0x00 0x00

add 15% to
zebra level
(15 % = 0.15 f
= 0x0133 fp)

12 4 6 0 0 4 2 128 1 0x33 0x01 0 0

select
1080p 23.98 mode
on all cameras

16 255 9 0 0 1 0 1 0 24 1 3 0 0 0 0 0

subtract 0.3 from
gamma adjust for
green & blue
(-0.3 ~= 0xfd9a fp)

16 4 12 0 0 8 1 128 1 0 0 0x9a 0xfd 0x9a 0xfd 0 0

all operations
combined

76

4 4 0 0 0 1 0 0 255 5 0 0 0 6 0 0

1 0 0 0 4 8 0 0 1 5 3 0 0x10 0x27 0x00 0x00

4 6 0 0 4 2 128 1 0x33 0x01 0 0 255 9 0 0

1 0 1 0 24 1 3 0 0 0 0 0 4 12 0 0

8 1 128 1 0 0 0x9a 0xfd 0x9a 0xfd 0 0

22Developer Information

Developer Information
This section of the manual provides all the details you will need if you want to write custom
libraries and develop your own hardware for your Blackmagic 3G-SDI Arduino Shield.

Physical Encoding - I2C
The shield operates at the following I2C speeds:

1. Standard mode (100 kbit/s)
2. Full speed (400 kbit/s)

The default 7-bit shield I2C slave address is 0x6E.

Shield Pin	Function
 A4 | Serial Data (SDA)
 A5 | Serial Clock (SCL)

I2C Protocol (Writes):

 (START W) [REG ADDR L] [REG ADDR H] [VAL] [VAL] [VAL] ... (STOP)

I2C Protocol (Reads):

 (START W) [REG ADDR L] [REG ADDR H] ... (STOP) (START R) [VAL] [VAL] [VAL] ... (STOP)

The maximum payload (shown as **VAL** in the examples above) read/write length (following the internal
register address) in a single transaction is 255 bytes.

Physical Encoding - UART
The shield operates with a UART baud rate of 115200, 8-N-1 format.

Shield Pin	Function
 IO1 | Serial Transmit (TX)
 IO0 | Serial Receive (RX)

UART Protocol (Writes):

 [0xDC] [0x42] [REG ADDR L] [REG ADDR H] [‘W’] [LENGTH] [0x00] [VAL] [VAL] [VAL] ...

UART Protocol (Reads):

 [0xDC] [0x42] [REG ADDR L] [REG ADDR H] [‘R’] [LENGTH] [0x00] [VAL] [VAL] [VAL] ...

The maximum payload (shown as **VAL** in the examples above) read/write length (specified in the
LENGTH field) in a single transaction is 255 bytes.

Register Address Map
The shield has the following user address register map:

Address	Name	R/W	Register Description

 0x0000 - 0x0003 | IDENTITY | R | Hardware Identifier
 0x0004 - 0x0005 | HWVERSION | R | Hardware Version
 0x0006 - 0x0007 | FWVERSION | R | Firmware Version
 | | |
 0x1000 | CONTROL | R/W | System Control
 | | |
 0x2000 | OCARM | R/W | SDI Control Override Arm
 0x2001 | OCLENGTH | R/W | SDI Control Override Length

23Developer Information

 0x2100 - 0x21FE | OCDATA | R/W | SDI Control Override Data
 | | |
 0x3000 | ICARM | R/W | SDI Control Incoming Arm
 0x3001 | ICLENGTH | R | SDI Control Incoming Length
 0x3100 - 0x31FE | ICDATA | R | SDI Control Incoming Data
 | | |
 0x4000 | OTARM | R/W | SDI Tally Override Arm
 0x4001 | OTLENGTH | R/W | SDI Tally Override Length
 0x4100 - 0x41FE | OTDATA | R/W | SDI Tally Override Data
 | | |
 0x5000 | ITARM | R/W | SDI Tally Incoming Arm
 0x5001 | ITLENGTH | R | SDI Tally Incoming Length
 0x5100 - 0x51FE | ITDATA | R | SDI Tally Incoming Data

All multi-byte numerical fields are stored little-endian. Unused addresses are reserved and read
back as zero.

Register: IDENTITY (Board Identifier)

[IDENTITY]
31 0

Identity: ASCII string ‘SDIC’ (i.e. `0x43494453`) in hexadecimal.

Register: HWVERSION (Hardware Version)

[VERSION MAJOR] [VERSION MINOR]
15 8 7 0

Version Major: Hardware revision, major component.

Version Minor: Hardware revision, minor component.

Register: FWVERSION (Firmware Version)

[VERSION MAJOR] [VERSION MINOR]
15 8 7 0

Version Major: Firmware revision, major component.

Version Minor: Firmware revision, minor component.

Register: CONTROL (System Control)

[RESERVED] [OVERRIDE OUTPUT] [RESET TALLY] [OVERRIDE TALLY] [
OVERIDE CONTROL]
7 4 3 2 1 0

Reserved: Always zero.

Override Output: When 1, the input SDI signal (if present) is discarded and the
shield generates its own SDI signal on the SDI output connector.
When 0, the input signal is passed through to the output if
present, or the shield generates its own SDI signal if not.

Reset Tally: When 1, the last received incoming tally data is immediately
copied over to the override tally data register. Automatically
cleared by hardware.

24Developer Information

Override Tally: When 1, tally data is overridden with the user supplied data.
When 0, input tally data is passed through to the output
unmodified.

Override Control: When 1, control data is overridden with the user supplied data.
When 0, input control data is passed through to the output
unmodified.

Register: OCARM (Output Control Arm)

[RESERVED] [ARM]
7 1 0

Reserved: Always zero.

Arm: When 1, the outgoing control is data armed and will be sent in
the next video frame. Automatically cleared once the control has
been sent.

Register: OCLENGTH (Output Control Length)

[LENGTH]
7 0

Length: Length in bytes of the data to send in OCDATA.

Register: OCDATA (Output Control Payload Data)

[CONTROL DATA]
255*8-1 0

Control Data: Control data that should be embedded into a future video frame.

Register: ICARM (Incoming Control Arm)

[RESERVED] [ARM]
7 1 0

Reserved: Always zero.

Arm: When 1, incoming control data is armed and will be received in
the next video frame. Automatically cleared once a control
packet has been read.

Register: ICLENGTH (Incoming Control Length)

[LENGTH]
7 0

Length: Length in bytes of the data in _ICDATA_. Automatically set when
a new packet has been cached.

Register: ICDATA (Incoming Control Payload Data)

[CONTROL DATA]
255*8-1 0

Control Data: Last control data extracted from a video frame since _ICARM.
ARM_ was reset.

25Developer Information

Register: OTARM (Output Tally Arm)

[RESERVED] [ARM]
7 1 0

Reserved: Always zero.

Arm: When 1, the outgoing tally data is armed and will be continuously
from the next video frame until new data is set. Automatically
cleared once the tally has been sent in at least one frame.

Register: OTLENGTH (Output Tally Length)

[LENGTH]
7 0

Length: Length in bytes of the data to send in OTDATA.

Register: OTDATA (Output Tally Data)

[TALLY DATA]
255*8-1 0

Tally Data: Tally data that should be embedded into a future video frame
(one byte per camera). Bit zero indicates a Program tally, while bit
one indicates a Preview tally.

Register: ITARM (Input Tally Arm)

[RESERVED] [ARM]
7 1 0

Reserved: Always zero.

Arm: When 1, tally data armed and will be received in the next video
frame. Automatically cleared once the tally has been read.

Register: ITLENGTH (Input Tally Length)

[LENGTH]
7 0

Length: Length in bytes of the data in _ITDATA_. Automatically set when
a new packet has been cached.

Register: ITDATA (Input Tally Data)

[TALLY DATA]
255*8-1 0

Tally Data: Last tally data extracted from a video frame since _ITARM.ARM_
was reset (one byte per camera). Bit zero indicates a Program
tally, while bit one indicates a Preview tally.

26Help

Help

Getting Help
Your Blackmagic 3G-SDI Arduino Shield is a developers tool designed for you to develop
independently based on your custom requirements.

For the most up to date information about your shield, visit the Blackmagic Design online
support pages and check the latest support material.

Blackmagic Design Online Support Pages
The latest manual, software and support notes can be found at the Blackmagic Design support
center at www.blackmagicdesign.com/support.

Arduino Development Forum
If you have programming questions, you can get help from Arduino development forums on the
Internet. There is a whole community of Arduino developers and many good quality forums
where you can ask software questions, or even find a willing engineer to hire to implement your
solution for you!

Blackmagic Design Forum
The Blackmagic Design forum on our website is a helpful resource you can visit for more
information and creative ideas. This can also be a faster way of getting help as there may
already be answers you can find from other experienced users and Blackmagic Design staff
which will keep you moving forward. You can visit the forum at
https://forum.blackmagicdesign.com

Checking the Software Version Currently Installed
To check which version of Blackmagic Arduino Shield Setup software is installed on your
computer, open the About Blackmagic Arduino Shield Setup window.

 � On Mac OS X, open Blackmagic Arduino Shield Setup from the Applications folder.
Select About Blackmagic Arduino Shield Setup from the application menu to reveal
the version number.

 � On Windows 7, open Blackmagic Arduino Shield Setup from your Start menu.
Click on the Help menu and select About Blackmagic Arduino Shield Setup to reveal
the version number.

 � On Windows 8, open Blackmagic Arduino Shield Setup from the Blackmagic Arduino
Shield Setup tile on your Start page. Click on the Help menu and select About
Blackmagic Arduino Shield Setup to reveal the version number.

How to Get the Latest Software Updates
After checking the version of Blackmagic Arduino Shield Setup software installed
on your computer, please visit the Blackmagic Design support center at
www.blackmagicdesign.com/support to check for the latest updates. While it is usually a good
idea to run the latest updates, it is wise to avoid updating any software if you are in the middle
of an important project.

27Warranty

Warranty

12 Month Limited Warranty
Blackmagic Design warrants that the Blackmagic 3G-SDI Arduino Shield product will be free
from defects in materials and workmanship for a period of 12 months from the date of purchase.
If a product proves to be defective during this warranty period, Blackmagic Design, at its option,
either will repair the defective product without charge for parts and labor, or will provide a
replacement in exchange for the defective product.

In order to obtain service under this warranty, you the Customer, must notify Blackmagic Design
of the defect before the expiration of the warranty period and make suitable arrangements for
the performance of service. The Customer shall be responsible for packaging and shipping the
defective product to a designated service center nominated by Blackmagic Design, with
shipping charges pre paid. Customer shall be responsible for paying all shipping changes,
insurance, duties, taxes, and any other charges for products returned to us for any reason.

This warranty shall not apply to any defect, failure or damage caused by improper use or
improper or inadequate maintenance and care. Blackmagic Design shall not be obligated to
furnish service under this warranty: a) to repair damage resulting from attempts by personnel
other than Blackmagic Design representatives to install, repair or service the product, b) to
repair damage resulting from improper use or connection to incompatible equipment, c) to
repair any damage or malfunction caused by the use of non Blackmagic Design parts or
supplies, or d) to service a product that has been modified or integrated with other products
when the effect of such a modification or integration increases the time or difficulty of servicing
the product. THIS WARRANTY IS GIVEN BY BLACKMAGIC DESIGN IN LIEU OF ANY OTHER
WARRANTIES, EXPRESS OR IMPLIED. BLACKMAGIC DESIGN AND ITS VENDORS DISCLAIM
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. BLACKMAGIC DESIGN’S RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE
PRODUCTS IS THE WHOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR
ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF
WHETHER BLACKMAGIC DESIGN OR THE VENDOR HAS ADVANCE NOTICE OF THE
POSSIBILITY OF SUCH DAMAGES. BLACKMAGIC DESIGN IS NOT LIABLE FOR ANY ILLEGAL
USE OF EQUIPMENT BY CUSTOMER. BLACKMAGIC IS NOT LIABLE FOR ANY DAMAGES
RESULTING FROM USE OF THIS PRODUCT. USER OPERATES THIS PRODUCT AT OWN RISK.

© Copyright 2016 Blackmagic Design. All rights reserved. ‘Blackmagic Design’, ‘DeckLink’, ‘HDLink’, ‘Workgroup Videohub’,
‘ Videohub’, ‘DeckLink’, ‘Intensity’ and ‘Leading the creative video revolution’ are registered trademarks in the US and other
countries. All other company and product names may be trade marks of their respective companies with which they are
associated. Thunderbolt and the Thunderbolt logo are trademarks of Intel Corporation in the U.S. and/or other countries.

	Getting Started
	Attaching and Soldering Headers
	Mounting to the Arduino Board
	Plugging in Power
	Connecting to SDI Equipment

	Software Installation
	Installing Internal Software

	Installing Arduino Library Files
	Blackmagic Arduino Shield Setup
	I2C Address
	Video Format

	Programming Arduino Sketches
	Testing your Blackmagic Shield and Library Installation
	LED Indicators

	Attaching Shield Components
	Communicating with your Arduino Shield
	High Level Overview
	I2C Interface
	Serial Interface
	Example Usage

	Studio Camera Control Protocol
	Blackmagic Video Device Embedded Control Protocol
	Example Protocol Packets

	Developer Information
	Help
	Warranty

